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A new type of temperature waves that appear in an electrically conducting medium placed in a magnetostatic 

field is discovered. The velocity of these magnetotemperature waves is determined by the coefficient of 

electrical conductivity ,~ of the conductor and greatly exceeds the velocity of temperature propagation by 

thermal conduction. 

I. The majority of texts on electromagnetism consider in detail phenomena that occur in metallic specimens 

placed in an external electric field, and it is emphasized that free charges of the metal appear instantly on its 

surface, so that the external force lines, being deformed, are normal to it, and the electric field inside the conductor 

is always equal to zero [1-4 ]. 

However, the same publications fail to mention anything about what occurs in a conductor placed in a 

steady magnetic field. Analysis of this process shows that in the latter case the phenomena differ substantially from 

those occurring in an electrostatic field. 

First, the external magnetic field penetrates, though not very rapidly, inside the conductor; second, 
penetration by the magnetic field is accompanied by motion from the conductor surface to its center of a kind of 

heat wave, which will be called a magnetotemperature wave. The front of this wave represents a closed surface, i.e., 
a two-dimensional soliton whose height is determined by the temperature of a moving thin layer. 

Let us move to a quantitative consideration of the effect. As is known from electrodynamics [1 ], the bound- 

ary conditions for a magnetostatic field have the form: 

B l n -  B2n = 0 ,  (1) 

( 2 )  
B I ~ -  B2~ = ~ I  �9 

If we take into account that at the initial time instant t = 0 a magnetic field in the conductor is absent, the 
boundary conditions are simplified to 

Bin = 0 ,  ( l ' )  

, ( 2 , )  
BI* = -C- y " 

The physical essence of these equalities is simple: at the initial instant the induction lines B t bend round 

the conducting body, i.e., the external magnetic field turns out to be tangent to the conductor (Fig. la), while 

around the body there occur brief changes in field B1, which induces an electric field E, under the action of which 
the surface current 

j '  = . ( 3 )  
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Fig. 1. Initial form of the lines of magnetic induction near body surface (a) 
and their path (b) after the spherical conductor is placed in a magnetic field. 

flows along the conductor surface. If the body considered were a superconductor, the density of the surface current 

would remain invariant with time, and the magnetic field could never penetrate inside the body. 
On the other hand, in the case of an ordinary conductor with electrical resistance, the surface current f 

gradually becomes weaker because of dissipative losses, resulting, according to Eq. (2'), in a decrease in the 

tangential components of the magnetic force lines BtT. Correspondingly, the earlier absent normal components of 

the lines of induction Bin gradually increase. Simultaneously, according to Eq. (1), the normal components of the 

induction B2n also increase, i.e., the magnetic field begins to penetrate inside the body. Geometrically, this process 

can be interpreted as conversion of magnetic force lines from those tangent to the conductor to secant ones, which 

penetrate deeper and deeper into it (Fig. lb). 
Comparison of Figs. la and lb shows that at the initial instant of time the force lines bending around the 

conductor (having the shape of a sphere) passed along meridians on the spherical surface of the sphere; the dashed 

arrows show parallels along which the surface currents f flowed. Figure lb relates to a later instant t > 0, when 
magnetic force lines has already penetrated partially into the sphere and bend round the cavity, in which the field 

is still absent. This cavity has the shape of an ellipsoid of revolution elongated along the M N  axis; along the parallels 

of this ellipsoid weakened currents f flow. Later the currents f become gradually weaker; the ellipsoid surface that 

separates the magnc :zed and unmagnetized portions of the sphere is contracted to the polar axis MN. This 

continues until the elongated ellipsoid degenerates into a segment of the M N  axis and the magnetic field fills the 

entire volume of the conductor. 
i 

Assuming that the surface conductivity 2 is rather high and the density of the surface currents f is 

appreciable, we have the right to conclude that the boundary ellipsoids release a large quantity of heat, and the 

temperature in these thin layers increases sharply. In this case, though metals have a high thermal conductivity, 

the thin high-temperature layer, while moving, does not spread, but moves as a solidified soliton. This phenomenon 

is a result of the high velocity of the magnetotemperature wave, which substantially exceeds the speed of 

temperature propagation due to thermal conductivity. 
II. To justify the foregoing, we will derive a differential equation of the process of penetration of a magnetic 

field inside a conductor. For this purpose, we will make use of the Maxwell equations in a Gaussian system of units: 

4 n .  (4)  
rot B =-~-- l ,  

rot E = 1 OB (5)  
C Ot ' 

div B = 0.  (6) 
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Substituting Eq. (3) into Eq. (4), we obtain 

1 
rot B = ~ 4~ tl'. E .  

Operating with rot on both sides of this equality, we find 

rot rot B = 1 4~1'. rot E .  

Taking into account the well-known identity rot rot A = grad.  div A - AA and keeping in mind formulas 

(5) and (6), we obtain the equation 

1 0B 
AB = --4 4Jr,~' - -  (7) 

c - Ot 

with the initial condition 

Bt= 0 = 0 .  (8) 

As regards the boundary  conditions, they are represented by equalities (1) and (2), but it must  be kept in 

mind that the surface current  density in Eq. (2) is a function of time f = f ( t ) .  

We will write Eq. (7) in a somewhat converted form: 

0 a  ( 7 ' )  
Ot - ZAB , 

where 

C 2 (9) 
f �9 

4~rJl 

We can easily see that vector equation (7') is similar to the Fourier scalar heat-conduction equation 

OT 
- -  = aAT (10) 
Ot 

Here  a = k /go ,  where a and k are the coefficients of thermal diffusivity and thermal conductivity. It is therefore  

natural to call the quantity X the coefficient of magnetic conductivity. 

Owing to this analogy, it is possible, without solving Eq. (7'), to evaluate the velocity of penetrat ion of a 

magnetic field inside a conductor. In fact, in heat conduction theory [5 ] it is shown that the time of equalization 

of the temperature  in a body of size l is a quantity of the order  of rT - - t2 /a ,  therefore,  we may assume that the 

time T m of the penetration of a magnetic field into a spherical conductor of radius r is approximately equal to 

~ m - r 2 / x  �9 From this we may conclude that the velocity of the magnetotemperature  wave is determined by the 

quantity X, which is equal, according to Eq. (9), to the ratio of the constant C2/4Jr to the surface electrical 

conductivity 2'. In the aforementioned books on electromagnetism it is implicitly assumed that for all conducting 

media the coefficient 2' coincides with 2. One of the examples showing the inconsistency of this assumption is 

provided by superconductors.  Thei r  specific resistance is equal to zero; consequently,  2 = 2' = oo. At the same time, 

numerous experiments  on measurement  of the coefficient ~' ,m~,.ate that  the surface currents  j '  and electric 

conductivities 2' take finite values. 

Our prel iminary experiments on measurement  of the coefficients/~' for various conductors show that the 

value of 2' for any conducting medium is a certain function of the surface layer thickness and temperature.  At the 

present time we are investigating this problem in detail, but think it possible to use the approximate equality 

2' -- 2. Then,  for example, for a copper sphere (2 = 5.4.1017 cgse units, ~ = 150 cm2/sec, a = 1 cm2/sec) of radius 
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r ffi 1 2  cm it turns out that the time of magnetic-field penetration z m is approximately equal to I sec, whereas the 

period of temperature equalization is 150 times greater. 
It should be noted that for a number of substances (in particular, for a gas-discharge plasma) the values 

of ~l', and, consequently, of the magnetoconductivity Z, increase sharply with temperature. As a result, the height 
of the soliton and the degree of retardation of its motion increase substantially, other conditions being equal. 

Still more complex effects are observed if a conductor is placed in an alternating low-frequency magnetic 

field. 
Conclusion. Analysis of the electrodynamic conditions at the boundary of contact of a conducting medium 

with a magnetostatic field leads to the conclusion that a superheated boundary layer appears on the medium surface. 
This hot thin layer moves inside the conductor with a velocity inversely proportional to the electrical conductivity 

of the medium A and forms a decaying two-dimensional temperature soliton. 
The aforementioned effect is especially significant in media whose electrical conductivity increases sharply 

with temperature (for example, gas-discharge plasma with 2 - T ~ ) .  In this case the soliton thickness contracts, 

while its height increases. Simultaneously, the velocities of the soliton and of the accompanying magnetic field 

penetrating inside the conductor slow down. 

N O T A T I O N  

B1 and B2, external and internal magnetic fields; Bn and BT, normal and tangential components of magnetic 

fields; f ,  density of the surface current; C, electrodynamic constant (velocity of light in vacuum); 2, coefficient of 
electrical conductivity; 2', surface electrical conductivity; A, Laplace operator (Laplacian); c and p, heat capacity 
and density of substance; k and a, coefficients of thermal conductivity and thermal diffusivity; T, temperature. 
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